电商数据分析需要统计哪些指标
分析数据需要的指标有:
电商数据分析需要统计哪些指标呢?
电商数据分析需要统计哪些指标呢?
常规数据指标的监测,不在话下。如用户量,新用户量,UGC量(社交产品),销量,付费量,推广期间的各种数据等等。
渠道分析,或者说流量分析。对于一个在上升期得APP来说,你们会花资源去引流量、去别的渠道拉用户。
用户的核心转化率。
用户使用时长的监测。
用户流失情况。
活跃用户动态。
用户特征描述。
用户生命周期的监测。 数据分析是什么
本词条由“科普”百科科学词条编写与应用工作项目 审核 。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
数据指标
1.电商总体运营指标
数据指标
电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。电商总体运营整体指标包括四方面的指标:
(1)流量类指标
访客数(UV),指访问电商网站的不重复用户数。对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。而在移动终端区分用户的方式则是按设备计算用户。
页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。
人均页面访问数,即页面访问数(PV)/访客数,该指标反映的是网站访问粘性。
(2)订单产生效率指标
总订单数量,即访客完成网上下单的订单数之和。
访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。
(3)总体销售业绩指标
网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。
销售金额。销售金额是货品出售的金额总额。
注:无论这个订单终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。
客单价,即订单金额与订单数量的比值。
(4)整体指标
销售毛利,是销售收入与成本的值。销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。
毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。如京东的2014年毛利率连续四个季度稳步上升,从季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。
2.网站流量指标
数据指标
(1)流量规模类指标
常用的流量规模类指标包括访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。
(2)流量成本累指标
单位访客获取成本。该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的访客数的比值。单位访客成本与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的问题。
(3)流量质量类指标
跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。
页面访问时长。页访问时长是指单个页面被访问的时间。并不是页面访问时长越长越好,要视情况而定。对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。
人均页面浏览量。人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。人均页面浏览量反应的是网站的粘性。
(4)会员类指标
注册会员数。指一定统计周期内的注册会员数量。
活跃会员数。活跃会员数,指在一定时期内有消费或登录行为的会员总数。
活跃会员率。即活跃会员占注册会员总数的比重。
会员复购率。指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。
会员平均购买次数。指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。会员复购率高的电商网站平均购买次数也高。
会员回购率。指上一期末活跃会员在下一期时间内有购买行为的会员比率。
会员留存率。会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。留存率一般看新会员留存率,当然也可以看活跃会员留存。留存率反应的是电商留住会员的能力。
电商平台应该分析哪些数据?
在数据分析领域,“总注册数”、“新增注册数”指标本身是一个虚荣指标,该指标随着活动力度、形式等呈现短期暴增,他能够告诉你的活动传递并影响了多少“新用户”,这些新用户知道你在做什么,而并不意味你的产品一定对他有价值。显然要结合新用户的留存、转化等情况综合考量。科学的数据分析可以无限逼近客户真实意愿,数据分析可以指导员发现问题,找到弊病可能出现的原因,从而优化列表页的体验、提升首页流量分配效率、购买决策路径等,终提升用户的转化率。针对A的拉新活动,针对上述提到的拉新问题、活动效果评估不佳的情况,围绕拉新、留存与转化采取了相应措施。
电商需要掌握的数据分析要素有哪些?
1. 店铺的点击量数 这是能分析一个店铺运营结果的数据。一家销量高、推广效果好的店铺,通常点击率都非常高,这和后店铺的营业额有直接关系,如果点击率不高,可以从这个数据中获取,从而分析原因,进而可以作为改善运营、提高转化率的一种方式。
2. 访客分析 只有全面分析客户,才能了解他的价值,进而进行有针对性的营销。需要注意以下几点:1。区域比例访客比较分析产品类别中搜索度较高的三个词,快速找出客户所在位置,完美投递。还可以分析主要客户群,根据客户群准确定位,做好客户需求。
3. 直通车公式分析 卖家可以通过直通车更准确的分析网店的数据,然后进行合理的调整。数据可以从以下几个方面进行分析:1 .转化率点击转化率=总交易量/点击量X100 %;2.投入产出比投入产出比=交易总额/成本;3.平均点击成本平均点击成本=成本/点击量;商家可以很好的利用这些方面的数据分析来准确的分析直通车数据。当卖家利用直通车做好对网店的流量、访客、各种数据的分析,就能让自己的网店运营更精准,销量也会稳步增长。
关于电商需要掌握的数据分析要素有哪些,环球青藤小编今天就先和您分享到这里了。如若您对互联网营销有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于文案优化、广告营销文案写作的方法及素材等内容,可以点击本站的其他文章进行学习。
如何做电商数据分析
电商数据分析,往往可以通过这样几个步骤:
建立完整的数据体系
对获取到的数据报表进行分析,找出其中问题
针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进 一、首先建立数据体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据工具来实现:如Google Analytics, CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
搜索引擎营销(竞价)竞价后台数据
社交媒体:社交媒体后台数据
展示类广告投放 广告投放平台数据 等 二、分析
从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。
目前我也从事数据分析,主要用到的是数据表;主要是提供一些报表供参考。其实我感觉应该用到了5W2H分析法,还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。
电商数据分析是指针对我们再电子商务过程中获取的数据进行数据分析来指导自己做出政策的决策。如何做电商数据分析首先是你得知道自己想做数据分析的目的是什么,然后在针对完成该目的需要哪些方面的数据,再对这些方面的数据进行分析,从而发现存在的问题,然后解决问题,达到完成目的。
也是学徒级别,学习中!
电商数据分析需要统计哪些指标
简单来说,你需要一下几个指标
①网站使用:PV/UV、在线时间、跳失率、访问深度、转化率等;②流量来源分析:各渠道转化率、ROI、自然流量比重趋势等;③运营数据:总销售额、订单数、客单价、人均消费、单均商品数、订单转化率、退货率等;④用户分析:会员的地区分布、年龄分布、重复购买率、注册时长。
另外,下方是比较详细的说法,您可以看一下,毕竟对于电商数据指标的研究越深刻,越有利于后期运营及活动的开展
电子商务数据分析体系包括网站运营指标、经营环境指标、销售业绩指标、运营活动指标和客户价值指标五个一级指标。
网站运营指标这里定为一个综合性的指标,其下面包括有网站流量指标、商品类目指标以及(虚拟)供应链指标等几个二级指标。经营环境指标细分为外部经营环境指标和内部经营环境指标两个二级指标。销售业绩指标则根据网站和订单细分为2个二级指标,而营销活动指标则包括市场营销活动指标、广告投放指标和商务合作指标等三个二级指标。客户价值指标包括总体客户指标以及新老客户指标等三个二级指标。 网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。
1.网站流量指标
网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。流量指标的数据来源通常有两种,一种是通过网站日志数据库处理,另一种则是通过网站页面插入JS代码的方法处理(二种收集日志的数据更有长、短处。大企业都会有日志数据仓库,以共分析、建模之用。大多数的企业还是使用GA来进行网站与分析。)。网站流量指标可细分为数量指标、质量指标和转换指标,例如我们常见的PV、UV、Visits、新访客数、新访客比率等就属于流量数量指标,而跳出率、页面/站点平均在线时长、PV/UV等则属于流量质量指标,针对具体的目标,涉及的转换次数和转换率则属于流量转换指标,譬如用户下单次数、加入购物车次数、成功支付次数以及相对应的转化率等。
2.商品类目指标
商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。譬如商品类目结构占比,各品类销售额占比,各品类销售SKU集中度以及相应的库存周转率等,不同的产品类目占比又可细分为商品大类目占比情况以及具体商品不同大小、颜色、型号等各个类别的占比情况等。
3.供应链指标
这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。这里主要考虑从顾客下单到收货的时长、仓储成本、仓储生产时长、配送时长、每单配送成本等。譬如仓储中的分仓库压单占比、系统报缺率(与前面的商品类目指标有极大的关联)、实物报缺率、限时上架完成率等,物品发送中的譬如分时段下单出库率、未送达占比以及相关退货比率、COD比率等等。 一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标,这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标。
电商运营的基本数据指标有哪些
电商运营的基本数据指标四个指标,如下:
个指标:商品集中度,表示的销售额或者销售量之中,占比80%(具体数字可以自行约定)的商品数量或者比例。一般来讲,商品集中度越高越方便下单和追单,也就是补货更加容易,但是同时也暴露优质商品较少,有潜在风险,尤其季节性快消品类目,一旦处于换季边缘,集中度高的商品不给力,整个销售业绩将受到重挫,所以要联系所处品类的行业参考值,合理观察“商品集中度”;
第二个指标:商品动销率,商品动销率=动销品种数店铺经营总品种数,动销品种数:店铺里有销售的商品种类总数;
第三个指标:库销比,库销比=店铺即时库存或期末库存周期内总销售,其中库存和销售可以是数量亦可以是金额;
第四个指标:客户重合度,现在很多电商公司都是实施全网铺货和多品牌的战略(多品牌定位可以使市场覆盖面更广且抵御风险能力更强),为了使新品牌更快更有效的启动和成长,通常的做法是在初期把成熟品牌的网站流量导入到新品牌,加速其生长,这时候一定要计算新品牌和老品牌之间的客户重合度,以便达到一定的阈值可以使新品牌与老品牌解绑,让其行走。
过早地撤走流量可能致使新品牌发育迟缓甚至发育不良,过晚撤走流量可能致使多品牌同质化,品牌定位无区隔,不能有效产生增量市场。当然,成熟品牌与新品牌重合客户的异和特质只用“重合度”一个指标显然是不够的,我们可以这样来比较两个品牌,设成熟品牌是A,新品牌是B:
(1) 两个品牌的客户重合比例是多少?
(2) 在 (1)的基础上,计算重合客户的重复购买率?
(3) 在 (1)的基础上,计算重合客户自从在B买过商品之后就再也没有回到A购物过的客户比例?
(4) 在 (1)(2)(3)的基础上同时满足,客户的比例是多少?
这里必须着重强调一点:数据指标的统计务必保证的准确性。数据的准确性不仅决定了将来做数据分析丶挖掘和数学建模的深度与广度,更体现了数据的权威性,尤其关键指标的统计倘若经常出现池,会让所有人对数据失去信任,对基于数据得出的结论也随之信心瓦解了。在电商运营中,常见的网店运营指标有如下几个点:
1. 流量类指标 访客数(uv),指访问电商网站的不重复用户数....
2. 订单产生效率指标 总订单数量,即访客完成网上下单的订单数之和.访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比.
3. 总体销售业绩指标 网站成交额(gmv),电商成交金额,即只要网民下单,生成订单号,便可以计算在gmv里面....
4. 整体指标 销售毛利,是销售收入与成本的值.销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用).
网店运营,需要分析哪些数据
随着电商的发展,越来越多的企业和个人也加入到网店运营中来,想要凭借自己的力量运营好一家店铺。但对于电商新手,经常犯的错误是容易拍脑门决定运营思路,只凭感性判断,就就很容易坐下错误决策。汉聪电商提醒您,在做运营时,一定要全面了解这个产品的市场状况、产品竞争力情况、人群受众情况、运营预算等信息。而这些信息,淘宝都有数据工具来帮助大家进行分析。那么,在运营时,需要注意哪些数据呢?
1、店铺排行
通过行业排名,可以直接找到对标店铺或者竞品店铺的排名情况、成交指数、搜索人气、UV价值等重要信息。我们可以把这些数据作为运营目标或分析出排名靠前的店铺类型。
2、人群画像
可以在客群占比中圈定我们店铺的核心人群,以匹配店铺风格。结合核心年龄层显著的特点,反馈产品定位。
3、支付偏好
根据行业类目价格偏好和竞店的实际数据表现,得出可以参考的我们店铺的价格带。以此来定义店内的产品布局也是比较科学的,而其他的价格区间就不建议介入了。
4、属性偏好
属性偏好是对我们产品特质的一种分析、矫正;我们可以利用热门属性排名来自行检视产品于这些属性的匹配度,有没有问题,有没有改进的空间,有没有竞争力等等细节。
5、竞品核心数据情况
可以通过市场洞察的竞争板块获取初步的指数数据,包括核心流量来源、结构、转化情况、竞品sku销量数据等。这可以分析竞争对手的具体流量结构及流量渠道来源,从而了解他们的运营思路。
6、分析自己的店铺
详细的日间数据包括:访客数、销售额、转化率、支付件数、客单价、收藏加购的等。依托这些核心数据,可以进行更细粒度的产品,以及做店铺日常运营规划。
一般来说,做店铺分析前需要先采集店铺以及行业的基础数据。店铺数据可以用量子、小艾,行业数据可以用数据魔方、生意经。有了这些基础工具,卖家能够采集店铺的各项数据,例如流量情况、跳失率、成交情况、回头客、收藏情况、转化率、访问深度、客单价、销售地域分布及转化率情况,实际退款率等N多数据;行业数据则能够看到主类目趋势,子叶类目详情,近客单价的变化,活跃店铺以及商品数量等数据。
数据采集不难,更多卖家的难题卡在“怎么看”。一般而言,卖家都是直接去看量子后台看今天的数据、昨天的数据,当周数据和当月数据。但是这里面很多数据都是在不同的选项里,不能完整地按照趋势变化来呈现数据,卖家靠大脑强记也不是办法。那到底怎么看呢?稍微愿意学习一下Excel基本作的卖家可以自己动手,对这些基础数据进行加工、提取、组合,让它们变成一组对店铺能够起到帮扶作用的数据分析报表。
图一:勾选对应的选项,图一的趋势曲线会增加或者减少
以店铺基础数据(图一)为例,可以通过一些计算方法让不同数据呈现在一个表格里面,并且可以通过随意选择数据查看对比,清晰明了的看清楚数据看懂数据。
比如,查看几项流量数据来诊断流量下降的原因,是单品宝贝流量下降,还是付费推广、自主访问等流量下降,或者是行业整体下降,都一目了然。如果发现是单品流量下降了,就能在自然搜索的UV里面发现问题,然后在量子里单独拉出宝贝的流量数据查看是哪一款或者哪几款宝贝流量下降,从而找到问题的源头去解决问题,而不是拍脑袋说大家流量都下降了来掩饰问题的本质。