网店运营,需要分析哪些数据
随着电商的发展,越来越多的企业和个人也加入到网店运营中来,想要凭借自己的力量运营好一家店铺。但对于电商新手,经常犯的错误是容易拍脑门决定运营思路,只凭感性判断,就就很容易坐下错误决策。汉聪电商提醒您,在做运营时,一定要全面了解这个产品的市场状况、产品竞争力情况、人群受众情况、运营预算等信息。而这些信息,淘宝都有数据工具来帮助大家进行分析。那么,在运营时,需要注意哪些数据呢?
企业电商决策需要哪些数据 电商职业决策选择
企业电商决策需要哪些数据 电商职业决策选择
1、店铺排行
通过行业排名,可以直接找到对标店铺或者竞品店铺的排名情况、成交指数、搜索人气、UV价值等重要信息。我们可以把这些数据作为运营目标或分析出排名靠前的店铺类型。
2、人群画像
可以在客群占比中圈定我们店铺的核心人群,以匹配店铺风格。结合核心年龄层显著的特点,反馈产品定位。
3、支付偏好
根据行业类目价格偏好和竞店的实际数据表现,得出可以参考的我们店铺的价格带。以此来定义店内的产品布局也是比较科学的,而其他的价格区间就不建议介入了。
4、属性偏好
属性偏好是对我们产品特质的一种分析、矫正;我们可以利用热门属性排名来自行检视产品于这些属性的匹配度,有没有问题,有没有改进的空间,有没有竞争力等等细节。
5、竞品核心数据情况
可以通过市场洞察的竞争板块获取初步的指数数据,包括核心流量来源、结构、转化情况、竞品sku销量数据等。这可以分析竞争对手的具体流量结构及流量渠道来源,从而了解他们的运营思路。
6、分析自己的店铺
详细的日间数据包括:访客数、销售额、转化率、支付件数、客单价、收藏加购的等。依托这些核心数据,可以进行更细粒度的产品,以及做店铺日常运营规划。
一般来说,做店铺分析前需要先采集店铺以及行业的基础数据。店铺数据可以用量子、小艾,行业数据可以用数据魔方、生意经。有了这些基础工具,卖家能够采集店铺的各项数据,例如流量情况、跳失率、成交情况、回头客、收藏情况、转化率、访问深度、客单价、销售地域分布及转化率情况,实际退款率等N多数据;行业数据则能够看到主类目趋势,子叶类目详情,近客单价的变化,活跃店铺以及商品数量等数据。
数据采集不难,更多卖家的难题卡在“怎么看”。一般而言,卖家都是直接去看量子后台看今天的数据、昨天的数据,当周数据和当月数据。但是这里面很多数据都是在不同的选项里,不能完整地按照趋势变化来呈现数据,卖家靠大脑强记也不是办法。那到底怎么看呢?稍微愿意学习一下Excel基本作的卖家可以自己动手,对这些基础数据进行加工、提取、组合,让它们变成一组对店铺能够起到帮扶作用的数据分析报表。
图一:勾选对应的选项,图一的趋势曲线会增加或者减少
以店铺基础数据(图一)为例,可以通过一些计算方法让不同数据呈现在一个表格里面,并且可以通过随意选择数据查看对比,清晰明了的看清楚数据看懂数据。
比如,查看几项流量数据来诊断流量下降的原因,是单品宝贝流量下降,还是付费推广、自主访问等流量下降,或者是行业整体下降,都一目了然。如果发现是单品流量下降了,就能在自然搜索的UV里面发现问题,然后在量子里单独拉出宝贝的流量数据查看是哪一款或者哪几款宝贝流量下降,从而找到问题的源头去解决问题,而不是拍脑袋说大家流量都下降了来掩饰问题的本质。
电商需要掌握的数据分析要素有哪些?
1. 店铺的点击量数 这是能分析一个店铺运营结果的数据。一家销量高、推广效果好的店铺,通常点击率都非常高,这和后店铺的营业额有直接关系,如果点击率不高,可以从这个数据中获取,从而分析原因,进而可以作为改善运营、提高转化率的一种方式。
2. 访客分析 只有全面分析客户,才能了解他的价值,进而进行有针对性的营销。需要注意以下几点:1。区域比例访客比较分析产品类别中搜索度较高的三个词,快速找出客户所在位置,完美投递。还可以分析主要客户群,根据客户群准确定位,做好客户需求。
3. 直通车公式分析 卖家可以通过直通车更准确的分析网店的数据,然后进行合理的调整。数据可以从以下几个方面进行分析:1 .转化率点击转化率=总交易量/点击量X100 %;2.投入产出比投入产出比=交易总额/成本;3.平均点击成本平均点击成本=成本/点击量;商家可以很好的利用这些方面的数据分析来准确的分析直通车数据。当卖家利用直通车做好对网店的流量、访客、各种数据的分析,就能让自己的网店运营更精准,销量也会稳步增长。
关于电商需要掌握的数据分析要素有哪些,环球青藤小编今天就先和您分享到这里了。如若您对互联网营销有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于文案优化、广告营销文案写作的方法及素材等内容,可以点击本站的其他文章进行学习。
电商平台应该分析哪些数据?具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
一、时间维度
从时间维度上来看,除了显示分析周期的数据,常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。
二、商品类别、价格维度
本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):
这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!
电商运营要关注哪些数据?如何获取这些数据
电商运营要关注的数据如下所示:1、订单数据:每天成交额、客单价等
2、用户数据:新老用户的登录、购买情况等
3、商品数据:商品销量、库存、价格数据
4、流量数据:PV/UV、流量分布,访问深度
5、咨询数据:咨询数据也是关注的,转化率多少
6、推广数据:推广渠道的点击、转化情况,筛选核心渠道,新客户获取成本要尽量越少越好
7、营销活动数据分析
电商数据分析需要统计哪些指标
简单来说,你需要一下几个指标
①网站使用:PV/UV、在线时间、跳失率、访问深度、转化率等;②流量来源分析:各渠道转化率、ROI、自然流量比重趋势等;③运营数据:总销售额、订单数、客单价、人均消费、单均商品数、订单转化率、退货率等;④用户分析:会员的地区分布、年龄分布、重复购买率、注册时长。
另外,下方是比较详细的说法,您可以看一下,毕竟对于电商数据指标的研究越深刻,越有利于后期运营及活动的开展
电子商务数据分析体系包括网站运营指标、经营环境指标、销售业绩指标、运营活动指标和客户价值指标五个一级指标。
网站运营指标这里定为一个综合性的指标,其下面包括有网站流量指标、商品类目指标以及(虚拟)供应链指标等几个二级指标。经营环境指标细分为外部经营环境指标和内部经营环境指标两个二级指标。销售业绩指标则根据网站和订单细分为2个二级指标,而营销活动指标则包括市场营销活动指标、广告投放指标和商务合作指标等三个二级指标。客户价值指标包括总体客户指标以及新老客户指标等三个二级指标。 网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。
1.网站流量指标
网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。流量指标的数据来源通常有两种,一种是通过网站日志数据库处理,另一种则是通过网站页面插入JS代码的方法处理(二种收集日志的数据更有长、短处。大企业都会有日志数据仓库,以共分析、建模之用。大多数的企业还是使用GA来进行网站与分析。)。网站流量指标可细分为数量指标、质量指标和转换指标,例如我们常见的PV、UV、Visits、新访客数、新访客比率等就属于流量数量指标,而跳出率、页面/站点平均在线时长、PV/UV等则属于流量质量指标,针对具体的目标,涉及的转换次数和转换率则属于流量转换指标,譬如用户下单次数、加入购物车次数、成功支付次数以及相对应的转化率等。
2.商品类目指标
商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。譬如商品类目结构占比,各品类销售额占比,各品类销售SKU集中度以及相应的库存周转率等,不同的产品类目占比又可细分为商品大类目占比情况以及具体商品不同大小、颜色、型号等各个类别的占比情况等。
3.供应链指标
这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。这里主要考虑从顾客下单到收货的时长、仓储成本、仓储生产时长、配送时长、每单配送成本等。譬如仓储中的分仓库压单占比、系统报缺率(与前面的商品类目指标有极大的关联)、实物报缺率、限时上架完成率等,物品发送中的譬如分时段下单出库率、未送达占比以及相关退货比率、COD比率等等。 一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标,这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标。