电商运营数据分析包括哪些内容?
构建电商数据分析的基本指标体系,主要分为8个类指标。
电商经营分析表怎么做 电商经营指标
电商经营分析表怎么做 电商经营指标
1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6.市场营销活动指标,主要某次活动给电商网站带来的效果,以及广告的投放指标。
7.风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。
8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。
电商数据分析怎么做
电商分析数据方法如下:
一、依据用户画像,洞察需求
用户画像即用户信息标签化,通过收集用户的属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
二、依据渠道数据分析用户来源
对电商卖家来说,分析“访客数”重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
三、店内转化率的数据分析
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。
四、提高营销推广的ROI
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
五、产品数据分析
1、产品数据分分析
我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
2、销量数据分析
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
如何做电商数据分析
目前我也从事数据分析,主要用到的是数据表;主要是提供一些报表供参考。其实我感觉应该用到了5W2H分析法,还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。电商数据分析,往往可以通过这样几个步骤:
1. 建立完整的数据体系
2. 对获取到的数据报表进行分析,找出其中问题
3. 针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进
一、首先建立数据体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据工具来实现:如Google Analytics, CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
1. 搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
2. 搜索引擎营销(竞价)竞价后台数据
3. 社交媒体:社交媒体后台数据
4. 展示类广告投放 广告投放平台数据 等
从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。谢谢采纳也是学徒级别,学习中!经济基础环境(网络可达性、物流可达性、支付可得性);
市场活跃状况及供需关系(网络活跃度指数、网络消费价格指数、网络经营价格指数、网络融资环境指数);
经济规模走势(网络消费指数、网络投资指数、网络贸易指数);
经济总量(电子商务经济增加值、电子商务就业量)
洛阳儒墨科技公司——产业电商经济数据监测、预测与政策模拟平台
电商怎么做数据分析
电商数据分析的常用方法有:逻辑树分析法;PEST分析法;度拆解法;对比分析法;设检验分析法。
1、逻辑树分析:逻辑树分析法的目的是把复杂的问题变简单,即把一个问题当成树干,然后找出所有充当树枝的子问题,并以此类推,逐步找到一个个具体而直接的子问题,从而找到解决复杂问题的方法。
2、PEST分析法:用于做行业分析,是通过Politics,经济Economy,Society和技术Technology四个因素来分析宏观环境的方法,其应用领域有公司战略规划,市场经营规划,产品发展规划,撰写研究报告等。
3、度拆解法:目的是从多个维度思考问题,即从多个角度出发,把一个复杂问题拆解成多个简单的子问题去解决,其把问题整体拆解成多个部分,通过对比可以看出不同整体之间部分的异。
4、对比分析法:通过对比找异,从而业务是否存在问题的方法。使用对比分析法,要搞清楚两个问题,一是和谁比,二是如何比。
5、设检验分析法:归因分析,即分析问题发生的原因,其底层逻辑是逻辑推理,分为3个步骤,分别是:提出设,收集证据,得出结论。
电商表格怎么制作
方法/步骤
vlookup是日常用的多的一个公式,做电商的都要学会它。
(1)Lookup函数是用于在表格或数值数组的首行查找指定的数值,并由此返回表格或数组当前列中指定行处的数值。
(2)VLOOKUP函数可以根据搜索区域内左列的值,去查找区域内其它列的数据,并返回该列的数据,对于字母来说,搜索时不分大小写。所以,函数VLOOKUP的查找可以达到两种目的:一是的查找。二是近似的查找。返回值对应就是0和1.
如下截图作,如我们要把后面拿到的商品编码和全国总出库销量,全国总库存数据根据商品匹配对应起来
作步,写公式=VLOOKUP(B2,F:G,2,0)
对应的分别是
查找值(B2列的数据是我要查找的)
数据表(F:H列的数据是得到的数据表信息)
2是序列号是表明我们要通过商品编码来查找到对应的销售数量
如果填3的话,那前面数据表就是要选择到F:H
0是返回值,一般很少填1,因为1是模糊查询,一般很少用
后总结按ENTER键返回就好
其他比较常用的公式还有:
(1)COUNTIF函数:计算特定数值在单元格区域中出现的次数。
“=COUNTIF(($D$31:$D$34,D31)”
(2) 公式:=ROUND(数字,指定位数)
如果指定位数>0,则舍入到指定的小数位;如果指定位数=0,则舍入到接近的整数,如果指定位数<0,则在小数点左侧舍入。
(3)就是表,一般做大促活动后的返场分析和总结报告中会经常用到这个
(4)if条件也是多用于活动返场分析和报告总结中
(5)文本判断在C列填=IF(EXACT(A2,B2),"1","0"),A,B两列数据,如果返回值是1则是完成一致的,如果返回值是0则是有问题的