电商平台应该分析哪些数据?具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
电商如何做数据库分析(电商项目数据库)
电商如何做数据库分析(电商项目数据库)
一、时间维度
从时间维度上来看,除了显示分析周期的数据,常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。
二、商品类别、价格维度
本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):
这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!
电商怎么做数据分析
电商数据分析的常用方法有:逻辑树分析法;PEST分析法;度拆解法;对比分析法;设检验分析法。
1、逻辑树分析:逻辑树分析法的目的是把复杂的问题变简单,即把一个问题当成树干,然后找出所有充当树枝的子问题,并以此类推,逐步找到一个个具体而直接的子问题,从而找到解决复杂问题的方法。
2、PEST分析法:用于做行业分析,是通过Politics,经济Economy,Society和技术Technology四个因素来分析宏观环境的方法,其应用领域有公司战略规划,市场经营规划,产品发展规划,撰写研究报告等。
3、度拆解法:目的是从多个维度思考问题,即从多个角度出发,把一个复杂问题拆解成多个简单的子问题去解决,其把问题整体拆解成多个部分,通过对比可以看出不同整体之间部分的异。
4、对比分析法:通过对比找异,从而业务是否存在问题的方法。使用对比分析法,要搞清楚两个问题,一是和谁比,二是如何比。
5、设检验分析法:归因分析,即分析问题发生的原因,其底层逻辑是逻辑推理,分为3个步骤,分别是:提出设,收集证据,得出结论。
电商运营如何做数据分析?
一.电商数据分析架构
首先需要承认的是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二.线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三.线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择合适的店铺以及对店铺实现高效管理。
如何进行电商网站数据分析?
一般而言,电子商务网站数据分析包括了流量来源的分析及流量效率的分析,还有网站内部数据流的分析,用户特征分析这四个部分。
其次,流量效率分析也是必不可少的一部分,在进行电商网站数据分析的时候流量效率指的是流量达到了网站是否属于真实的流量。那么,在具体分析的时候,要看下它的到达率,PV/IP比还有就是订单转化率等等。其中订单转化率是重要的一方面,若没有订单转换了一切都没意义。
,怎样进行电商网站数据分析也离不开站内数据流分析这个方面。这里所说的站内数据流的分析,主要是用于分析购物流程顺畅程度及网站产品分布合理与否等等,然后再根据这些来分析页面流量排名及场景转化率分析,站内搜索分析及客户为何离开页面分析等问题的分析等等,查看问题所在,然后想办法解决,才能让网站产品得到更好的推广。
电商网站如何做数据分析
你可以试试淘宝的魔镜直通车,或者把自己的收集的数据使用大数据魔镜进行可视化的分析,这两个是不一样的产品,魔镜的直通车是淘宝用的,大数据魔镜是阿里出来的团队做的,的大数据可视化分析工具,后者包含免费的云平台版,同样免费的离线安装的基础企业版,收费的标准企业版,高级企业版,支持大数据分析处理的hadoop版。两个工具根据你的不同的需求选择。电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。
电商怎么做数据分析
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行作,得出结果,结果可以用图表或者图形的方式表现出来。图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。
如何做电商数据分析
目前我也从事数据分析,主要用到的是数据表;主要是提供一些报表供参考。其实我感觉应该用到了5W2H分析法,还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。电商数据分析,往往可以通过这样几个步骤:
1. 建立完整的数据体系
2. 对获取到的数据报表进行分析,找出其中问题
3. 针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进
一、首先建立数据体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据工具来实现:如Google Analytics, CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
1. 搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
2. 搜索引擎营销(竞价)竞价后台数据
3. 社交媒体:社交媒体后台数据
4. 展示类广告投放 广告投放平台数据 等
从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。谢谢采纳也是学徒级别,学习中!经济基础环境(网络可达性、物流可达性、支付可得性);
市场活跃状况及供需关系(网络活跃度指数、网络消费价格指数、网络经营价格指数、网络融资环境指数);
经济规模走势(网络消费指数、网络投资指数、网络贸易指数);
经济总量(电子商务经济增加值、电子商务就业量)
洛阳儒墨科技公司——产业电商经济数据监测、预测与政策模拟平台