电商平台应该分析哪些数据?具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
怎样统计电商销售数据 电商怎么统计数据
怎样统计电商销售数据 电商怎么统计数据
怎样统计电商销售数据 电商怎么统计数据
一、时间维度
从时间维度上来看,除了显示分析周期的数据,常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。
二、商品类别、价格维度
本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):
这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!
电商运营如何做数据分析?
大家好,我是羽翼课堂创始人Benny。
什么是数据分析思维?
数据分析思维,我认为是:把行为转化为数据-通过数据反推行为。
我举个例子:
你经常来我店铺购买姨妈巾。
你今天过来买姨妈巾,我就知道你大概一周内要来大姨妈。根据你购买的数量跟规格,我就能推断你一次大姨妈来多久,量大概多少。拉出来你半年的购买时间,我就可以推断你多久一次大姨妈是不是稳定。
如果有两个月没看到你购买姨妈巾了。。。那肯定是在两个月前,你男朋友的雨衣破了。
拉出来你男朋友的购买记录,我就知道,这个店铺的雨衣可能不合格。
为了验证他是不是不合格,我们去看看他半年内的复购率是不是远低于同行。
嗯,就因为你没有买姨妈巾,我怀疑这个店铺的雨衣不合格。
这就是数据分析的基本思维。
学会数据分析的基本思维,只能说,你勉强具备数据分析的可能。
那么做数据分析。需要明白几个东西。
1、数据样本:数据样本如果选择不合理,那么结果完全就是错误的。譬如我去抓取一个定位40岁大姨妈巾店铺,要女性的姨妈周期,那根本就不科学好吗。这是青春期跟更年期的异(此例子说明林慕白同学同样对妇科知识有所涉猎,欢迎广大适龄未婚女性知友来信咨询)。
实战中经常犯的例子是:平销转化率很好的单品,在聚划算卖不好。平销转化率不好的某些单品,聚划算反而会卖爆?为什么呢?想想,别问我,自己想。闹不明白就别尝试做电商的数据分析了。
2、数据选择:实际上我们会遇到很多的数据,但是有些数据不一定是我们想要的。就像我们这辈子会遇到很多很好的女生,但是我们很难明白,谁才能更好陪伴我们走完这一生。这个事情无法举例,我这边给一份试题:
现在我们店铺需要做优惠券促销,目的要提高客单价。
好,你告诉我要做满100减10元。
嗯,很好,那你现在告诉我,为什么是满100而不是满110,为什么是减10元而不是减20。拿出来你的数据。
嗯,不要问我怎么弄。也不要怀疑我是不是真的能分析出来,我真的能。
3、动态变化:我们一般常用的,就是通过数据之间的变化,来分析可能出现一些什么问题或者变化。然而当一个数据量变化的时候,往往其他的数据也会发生变化。所以我们需要清晰什么数据之间是正相关,什么是反相关,他们之间的关系,在什么情况下是成立的。譬如正常收藏的比例跟转化率是正相关的,但是这几天他们是反相关的。转化率越掉,收藏率可能就越高。
电商怎么做数据分析
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行作,得出后结果,结果可以用图表或者图形的方式表现出来。图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。
电商运营如何做数据分析?
一.电商数据分析架构
首先需要承认的是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二.线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三.线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择合适的店铺以及对店铺实现高效管理。
如何进行电商网站数据分析?
一般而言,电子商务网站数据分析包括了流量来源的分析及流量效率的分析,还有网站内部数据流的分析,用户特征分析这四个部分。
其次,流量效率分析也是必不可少的一部分,在进行电商网站数据分析的时候流量效率指的是流量达到了网站是否属于真实的流量。那么,在具体分析的时候,要看下它的到达率,PV/IP比还有就是订单转化率等等。其中订单转化率是重要的一方面,若没有订单转换了一切都没意义。
后,怎样进行电商网站数据分析也离不开站内数据流分析这个方面。这里所说的站内数据流的分析,主要是用于分析购物流程顺畅程度及网站产品分布合理与否等等,然后再根据这些来分析页面流量排名及场景转化率分析,站内搜索分析及客户为何离开页面分析等问题的分析等等,查看问题所在,然后想办法解决,才能让网站产品得到更好的推广。
如何对电子商务数据进行分析?
构建电商数据分析的基本指标体系,主要分为8个类指标。
1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6.市场营销活动指标,主要某次活动给电商网站带来的效果,以及广告的投放指标。
7.风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。
8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。