电商数据分析需要统计哪些指标
简单来说,你需要一下几个指标
电商的统计都做什么内容 电商统计表
电商的统计都做什么内容 电商统计表
①网站使用:PV/UV、在线时间、跳失率、访问深度、转化率等;②流量来源分析:各渠道转化率、ROI、自然流量比重趋势等;③运营数据:总销售额、订单数、客单价、人均消费、单均商品数、订单转化率、退货率等;④用户分析:会员的地区分布、年龄分布、重复购买率、注册时长。
另外,下方是比较详细的说法,您可以看一下,毕竟对于电商数据指标的研究越深刻,越有利于后期运营及活动的开展
电子商务数据分析体系包括网站运营指标、经营环境指标、销售业绩指标、运营活动指标和客户价值指标五个一级指标。
网站运营指标这里定为一个综合性的指标,其下面包括有网站流量指标、商品类目指标以及(虚拟)供应链指标等几个二级指标。经营环境指标细分为外部经营环境指标和内部经营环境指标两个二级指标。销售业绩指标则根据网站和订单细分为2个二级指标,而营销活动指标则包括市场营销活动指标、广告投放指标和商务合作指标等三个二级指标。客户价值指标包括总体客户指标以及新老客户指标等三个二级指标。 网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。
1.网站流量指标
网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。流量指标的数据来源通常有两种,一种是通过网站日志数据库处理,另一种则是通过网站页面插入JS代码的方法处理(二种收集日志的数据更有长、短处。大企业都会有日志数据仓库,以共分析、建模之用。大多数的企业还是使用GA来进行网站与分析。)。网站流量指标可细分为数量指标、质量指标和转换指标,例如我们常见的PV、UV、Visits、新访客数、新访客比率等就属于流量数量指标,而跳出率、页面/站点平均在线时长、PV/UV等则属于流量质量指标,针对具体的目标,涉及的转换次数和转换率则属于流量转换指标,譬如用户下单次数、加入购物车次数、成功支付次数以及相对应的转化率等。
2.商品类目指标
商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。譬如商品类目结构占比,各品类销售额占比,各品类销售SKU集中度以及相应的库存周转率等,不同的产品类目占比又可细分为商品大类目占比情况以及具体商品不同大小、颜色、型号等各个类别的占比情况等。
3.供应链指标
这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。这里主要考虑从顾客下单到收货的时长、仓储成本、仓储生产时长、配送时长、每单配送成本等。譬如仓储中的分仓库压单占比、系统报缺率(与前面的商品类目指标有极大的关联)、实物报缺率、限时上架完成率等,物品发送中的譬如分时段下单出库率、未送达占比以及相关退货比率、COD比率等等。 一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标,这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标。
电商数据分析指标都有哪些?该如何进行分析?
此文是对近学习的电商相关知识点做一个巩固
传统零售利用二八法则生存,电商靠长尾理论积累销售。
传统零售是小数据,电商是大数据。
传统零售是“物流”,零售过程就是商品的流动;电商是“信息流”,顾客通过搜索、比较、评论、分享产生信息,达到购买的目的。
传统零售注重体验感,电商注重服务和效率。
传统零售是做加法,电商是做乘法。传统零售是通过一家家店扩大影响力,电商通过资金的投入迅速抢占市场。
传统零售的主要成本是房租和人工成本,电商的主要成本是物流和营销成本。
总结:电商和传统零售虽有千万种别,但总归都是零售,融合是二者注定的趋势,即现在火热的新零售。
传统零售的数据主要是进销存数据、顾客数据和消费数据。电商的数据却复杂得多,数据来源渠道也很多样化
电商数据来源广泛,常规的流量数据、交易数据、会员数据在品牌的交易平台都有提供。一些第三方网站也提供数据源及分析功能。
1、百度统计:包括流量相关的网站统计、推广统计、移动统计三部分内容。分析内容包括趋势分析、来源分析、页面分析、访客分析、定制分析和优化分析。
2、谷歌分析:包括流量分析工具、内容分析、社交分析、移动分析、转化分析、广告分析几部分内容。
3、Crazy egg热力图:主要特色是对页面热点分析的热力图。
4、CNZZ数据专家(友盟):包括站长统计、全景统计、手机客户端、云、广告管家、广告效果分析和数据中心等。
还有一些无需埋点监测数据的产品,如GrowingIO、神策数据、诸葛io等。
以下为用思维导图进行梳理的电商数据分析指标,总共包括六大类
对访问你网站的访客进行分析,基于这些数据指标可以网页进行改进
这里需要注意两个点
1)影响因素不同:UV 价值更受流量质量的影响;而客单价更受卖的货的影响;
2)使用场景不同:UV 价值可以用来评估页面 / 模块的创造价值的潜力;客单价可以用来比较品类和商品特征,但一个页面客单价高,并不代表它创造价值的能力强,只能得出这个页面的品类更趋近于是卖高价格品类的。
如果网站是为了帮助客户尽快完成他们的任务(比如:购买,答疑解惑),那么在线时长应当是越短越好;如果希望客户一同参与到网站的互动中来,那么时间越久会越好。所以,分析在线时长是否越长越好,要根据产品定位来具体分析
从注册到成交整个过程的数据,帮助提升商品转化率。
对于一个新电商来说,积累数据,找准营运方向比卖多少货,赚多少钱更重要。这个阶段主要 关注流量指标 ,指标如下:
对于已经经营一段时间的电商,通过数据分析 提高店铺销量 就是首要任务。此阶段的重点指标是 流量和销售指标 ,指标如下:
对于已经有规模的电商,利用数据分析 提升整体营运水平 就很关键。重点指标如下:
数据指标分为指标、分析指标和营运指标,营运指标就是绩效考核指标。一个团队的销售额首先是出来的,其次是分析出来的,后才是绩效考核出来的。销售自然是按天、按时段说话,分析一般是以周和月为单位,绩效考核常常是以月为主、以年为辅。
执行人员侧重过程指标,管理层侧重结果指标。对于数据分分析人员来说要学会根据职位提供不同的数据。
1、无流量不电商,对于流量分析,我们常用漏斗图来做分析,几乎每个流量的细分都可以用到漏斗图。
2、漏斗图就是一个细分和溯源的过程,通过不同的层次分解从而找到转化的逻辑。
3、漏斗图的弱点,就是反应一条转化路径的形态,我们可以稍加修改实现漏斗图的对比功能。
1、流量的质量分为质和量两方面,只有质没有量的流量是没有多少实际价值的,流量的质体现在不同的营销目的上,例如获得点击、注册、收藏、购买或者获取利润的目的。
2、可以通过四象限分析图来对比分析流量的质量。下图是针对购买的转化率和流量的四象限图,其中象限的流量应该是高质量的,流量和转化率均高于平均值;第二象限渠道的流量转化率高,但量不大,通过搜索来的流量大部分属于此类;第四象限流量属于质低量高,站外购买的流量这种情况比较多;第三象限属于质低量低的双低流量,不用特别维护,任其发展即可。
3、图中的Y轴可以根据具体的分析目的替换成点击率、注册率、收藏率、ROI(单元产出)等进行对比分析。
四象限分析图中,X轴、Y轴、分析对象都可以根据不同的目的进行替换。
4、散点图的四象限分析可以结合趋势,或者演变成四象限气泡图,气泡图的大小为ROI,这种四象限图信息量更大。
1、电商的销售针对比传统零售复杂很多,主要复杂在流量的多层次多渠道上,互联网的好处是几乎能将用户的每个动作记录下来,然后我们从中找到关键点进行诊断即可。下图,是一个类似杜邦分析的图,从值(图中红色)和率(图中蓝色)两个方面,订单、新客、老客三个维度将销售额拆成五个层次,每个层次间具有加或乘的逻辑关系。
2、销售额是一个结果指标,图中的20个指标是过程指标,每个指标的变化都会影响终的销售额,基本都是正相关。(折扣和销售额的关联会稍微复杂一些)
3、通过上图,使用对比、细分的原则分析可以判断出哪儿些指标变化对销售额产生了影响。
参考书籍为《数据化管理——洞悉零售及电子商务运营》
电子商务运营数据一般分析哪些?
一、浏览、创建订单,支付订单转化;
二、商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
三、商品两个时间区间的销量、金额、客单价对比分析;
四、网站首页、频道页对商品浏览、创建订单,支付订单转化;
五、网站首页、频道页对商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
六、网站页面广告位对商品浏览、创建订单,支付订单转化;
七、自定义商品组功能,重点对商品活动、商品类目进行统计分析。流量转化数据,来访ip的到访页面,可以通过第三方工具Topbox电商的来源渠道转化数据;搜索引擎免费/付费关键字转化数据;广告转化数据;以及对EDM,SMS进行和分析。访客量(UV)、页面的浏览量(PV)、转化率
同时还有同期相比,和往日相比。
一般就这五个数据。期它的看不看都没有什么。这个说起来就比较多了。比如说用户细分分析,页面浏览情况分析,营销效果的与分析等等。运营需要做的工作都可以用数据来指导,重点是自己能不能够收集到正确的数据以及发掘数据背后的信息。
电商运营要怎么统计数据?
一. 电商数据分析架构
首先需要承认的是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二. 线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三. 线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择合适的店铺以及对店铺实现高效管理。
如何做电商数据分析
电商数据分析,往往可以通过这样几个步骤:
建立完整的数据体系
对获取到的数据报表进行分析,找出其中问题
针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进 一、首先建立数据体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据工具来实现:如Google Analytics, CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
搜索引擎营销(竞价)竞价后台数据
社交媒体:社交媒体后台数据
展示类广告投放 广告投放平台数据 等 二、分析
从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。
目前我也从事数据分析,主要用到的是数据表;主要是提供一些报表供参考。其实我感觉应该用到了5W2H分析法,还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。
电商数据分析是指针对我们再电子商务过程中获取的数据进行数据分析来指导自己做出政策的决策。如何做电商数据分析首先是你得知道自己想做数据分析的目的是什么,然后在针对完成该目的需要哪些方面的数据,再对这些方面的数据进行分析,从而发现存在的问题,然后解决问题,达到完成目的。
也是学徒级别,学习中!
电商数据分析是什么
电商数据分析包括了大行业大平台的数据状况,也可以是小到店铺、单品、sku的某个某个维度详细数据分析。
除了常规的商品型号、商品价格、促销信息、店铺名称等,还可以自定义其他维度、可以说说是做到了全方位展现渠道违规行为,满足多样化的巡检场景需求。
从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
电商分析数据方法如下:
一、依据用户画像,洞察需求
用户画像即用户信息标签化,通过收集用户的属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
二、依据渠道数据分析用户来源
对电商卖家来说,分析“访客数”重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。
三、店内转化率的数据分析
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:
1、销售转化率 ——已购买的用户和全部来到店铺的用户比值。
2、平均订单价值 —— 用户下单的平均金额。
3、放弃购物车率—— 在所有产生的订单中,未完成订单的占比。
四、提高营销推广的ROI
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
五、产品数据分析
1、产品数据分分析
①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后终下单的人数。
②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
2、销量数据分析
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
六、用户留存数据分析
聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。
七、用户数据分析
对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。
电商运营主要工作内容是什么?
一、数据
体检店铺,查看店铺是否有违规或扣分记录。统计好前一天的各项数据,如主推款、副推款、直通车、整体店铺数据等。还要统计好店铺流量数据,然后对比前一天的查看数据是否有异常并及时做出相应的方案。
查看排名、宝贝排名及店铺等级上升情况,查看店铺的跳失率,人均浏览时长、来查看详情是否出现问题,及时做出调整。
统计好竞争对手的各项数据,查看他是否有做什么变更,统计好前一天的销售情况,把数据统计做成表格。
二、查看实时数据
实时动态:分析出人群从哪些入口进店购买产品,根据流量来源优化和成本情况优化标题、主图、详情页。
好评:是跟真实买家来沟通,让他帮忙去晒图评论,这样是有效果的,也可以认为的去做一些评价。
三、付费推广
制作付费推广,测图、花费等,以及产品推出去的一个过程。
破零
1.宝贝发布出去后,每天叫人进店铺浏览,增加人气。
2.把上新的产品关联到店内销售好的产品内,让客户关联销售破零。
3.在直通车里建个,用来推广新品上新。
4.找朋友购买,从而让销量破零,控制转换率和同行不多,而且是持续、稳定增长趋势,后好评上图。
四、活动策划
正常情况在没有活动的期间,可以在自己店内做一些促销性的活动。如果是活动的情况下,那么赠送一些与活动相关的的礼品,如免单、抽奖等。单品流量多的就做一些关联销售,查看淘宝是否有活动可以去参与,在微淘及内容自媒体做一些店铺活动优惠。
五、中评处理
打电话给客户跟他沟通,了解实际情况并做成报表统计出来。接下来去检查我们本身产品是否真的有这种情况,然后跟客户反馈作出一些调整。了解情况后,如果产品确实有问题,适当的给客户一些补偿,让他更改中评。
六、会员管理
在用户购买产品的时候,帮他加入店内的会员名单中来。在节日的时候,给会员人发送短信关怀,以及售后的服务问题,不定期向会员发送优惠。
电商平台的用户评论统计是做什么的
电商平台的用户评论统计有以下作用:
1、确认消费者关注与产品卖点是否一致;
2、洞察用户对价格、促销、直播的敏感度;
3、发现产品质量、、物流等方面的问题;
4、找到品牌宣称与用户预期、实际场景之间异化;
5、挖掘消费者偏好的异性,进行用户分群偏好研究;
5、还原客户故事,分析其购买场景、决策因素、使用方式等;
6、通过竞品电商评价,进行市场空间对比,取强补弱制定更适合的市场策略。
电子商务平台即是一个为企业或个人提供网上交易洽谈的平台。企业电子商务平台是建立在Internet网上进行商务活动的虚拟网络空间和保障商务顺利运营的管理环境;是协调、整合信息流、货物流、资金流有序、关联、高效流动的重要场所。